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The application of multigrid methods is complicated if the set of governing equa-
tions contains strongly nonlinear source terms. This is the case for finite-rate chem-
istry as well as for turbulence conservation equations. In most cases strong nonlinear-
ities within the chemical production rates prevent convergence of standard multigrid
methods. This paper investigates different approaches to treating chemical and turbu-
lent production terms on coarse grids in order to enable convergence. Independent of
combustion, supersonic flows require special care during restriction and prolongation
if strong shock waves occur. A full coarsening four-level nested multigrid method
is used for all conservation equations including those of turbulence and species
transport. Strong convergence accelerations are achieved by a local source term-
dependent damping of the restricted residual error. Several test cases with and with-
out combustion demonstrate the efficiency and accuracy of the proposed multigrid
algorithm.  © 1998 Academic Press
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1. INTRODUCTION

The simulation of chemically reacting flows using finite-rate chemistry still requir
tremendous computer time, making convergence accelerations extremely necessar
nonreactive flows multigrid techniques belong to the most efficient methods to reac
steady state solution. They have first been employed to elliptic subsonic flows, where
cellent results may be achieved [1-3]. Jamestom. [4, 5] developed an implicit multigrid
method for transonic flows. Modifications also allow the calculation of supersonic ¢
hypersonic problems [6-15]. Due to their hyperbolic character, such cases require ch
teristic restriction and prolongation operators [11] or a damping of the transferred resi
errors at shock waves [12—15]. Even if the achieved convergence accelerations for s
sonic flows are smaller than those for subsonic cases, a strong reduction in computet
is demonstrated by all authors cited above.
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Very little work has been done on application of multigrid methods if the set of governi
equations includes strongly nonlinear source terms. Difficulties often arise due to wi
disparate time and length scales which in the case of finite-rate chemistry may differ n
orders in magnitude. The resulting numerical stiffness is usually treated with implicit
at least point-implicit numerical methods for time integration. Therefore the multigl
technique hasto be adapted forimplicit schemes also. Convergence acceleration of mul
methods is based on the fact that low frequencies of the error are damped more effici
on coarser grid levels. This is in contrast to the local behavior of turbulent or chem
production terms. If the source vector contains strongly nonlinear parts, coarse grid ve
strongly differ from corresponding fine grid values and therefore may no longer repre:
the problem on the finest grid. A second difficulty is that even small coarse grid correct
interpolated back to the finest grid may lead to strong changes within the source ve
which can prevent convergence. Therefore special techniques are necessary to tre
nonlinear source terms as well as the corresponding source Jacobians on coarse grid
problems arising from turbulent source terms are less severe than those due to chemis
the coupling between turbulence and fluid variables is quite weak. Even if low-Reyno
number turbulence models are employed, multigrid methods may achieve considel
speedups. Liu and Zheng [16] use a point-implicit method, freezing turbulent produc
terms on coarse grids. In Refs. [14, 15], a coarse grid treatment for the turbulent sc
vector is presented that speeds up convergence to a steady state drastically even ir
of massively separated flows, shock wave/boundary layer interactions, and extreme
aspect ratios.

Up to now, only a few papers have been published on the use of multigrid technic
for combustion calculations. Most of these papers achieved no or only small converg
accelerations. Slomskit al. [17] and Radespiett al. [18] calculated reacting or disso-
ciating air with small reaction schemes using standard multigrid procedureset&o
[19-21] employed the multigrid technique for the momentum equations only without pr
ing convergence accelerations. Considerable speedups are obtained byeshéffez] for
detonation waves using a two-level multigrid method. Most notably, Edwards [23] emplo
multigrid techniques for hypersonic chemically reacting flows and hydrogen combus
[24]. A global damping of the transferred residual error is used in Ref. [24] to ena
convergence. This paper investigates several approaches on coarse grids to appro;
chemical source terms and source Jacobians. The solution favored by the authors is ¢
damping of the restricted residual error in regions of high chemical activity. To our kno
edge this is the first paper where a four-level multigrid method is successfully emplo
for diffusion-dominated flames and low-Reynolds-number turbulence closure.

2. GOVERNING EQUATIONS

The investigation of high-speed turbulent combustion requires the solution of the
panded Navier—Stokes equations which are given in two-dimensional form by
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where the conservative variable vector is

Q:[p,pu,pv,,oE,,oq,,oa),pYi]T, i=212...,Ng—1. (2)
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F andG are inviscid,F, andG, are viscous fluxes ix- and y-directions, respectively.
The source vecto® results from turbulence and chemistry. The variables in Eq. (2) ¢
the densityp, the velocity components andv, the total specific energlg, the turbulence
variablesq = vk (k is the turbulent kinetic energy) angl= ¢/k (¢ is the dissipation rate
of k), and the species mass fractiofnsNg is the number of different species. The simula
tion of hydrogen combustion involves a 9-species, @, Hz, H,O, OH, O, H, NO,, and
H,0,), 20-step reaction scheme developed by Jachimowski [25] excluding the nitro
reactions. Fourth-order polynomials of temperature are employed for molecular visco
thermal conductivity, and diffusivity calculation of pure species. Mixture values of mole
ular viscosity and thermal conductivity are determined using Wilke’s law [26], and diff
sivity of one species in relation to the remaining gas is calculated according to Mason
Saxena [27]. Diffusion velocities and the associated heat flux terms are modeled u
Fick’s law. Turbulent contributions to thermal conductivity and diffusivity are obtained u
ing constant turbulent Prandtl and Schmidt numbers. For turbulence closure a two-equ
low-Reynolds-numbet-w model is employed [28—30].

A critical point for the multigrid method is the source vector appearing in Eq. (1) whi
is given by

$=[0.0,0,0.5.5,.5]". i=12.... N—1 ©)

The turbulent source terng andS, are calculated by [28]

S 2D
S D

Su = |:Cwl (C,u_z - Cw3_> - Cw2:| ,00)2 (5)
w w

and are also representative for other two equation turbulence clofureshe divergence
of the velocity field;S is the strain invariant; an@q1, C,, C.2, andC,z are modeling
constants [29]. Two types of terms cause problems in multigrid methods: Terms forme
squares of velocity derivatives as the strain invariant,

u  2/9u dv\]au [ou  av\? [.8v 2/9u dv\]dv
S=2——=(—+—||— — 4+ — 2—— - —+—)|—, (6
{ax 3<ax+ay)]ax+<ay+ax) +{ay 3<ax+ay>}8y ©
and exponential damping functions which depend on a turbulent Reynolds ni&qiber
Dg=1— exp(—0.022Ry), C.1 =0.5Dq + 0.055 @)

Damping functions are necessary in many low-Reynolds-number turbulence model:
an accurate simulation of the logarithmic near wall behavior. Like chemistry, turbul
production and dissipation are local phenomena. Nevertheless, there is a strong diffe
between turbulent and chemical source terms. While chemical production terms only de
onlocal values of the variable vector, turbulent production terms also depend on flow vari
derivatives which in discretized form require values from neighboring cells. Therefc
the resulting value of these terms (e.§), is strongly grid size (grid level) dependent.
Like chemical source terms, turbulent damping functions (&g) cause problems in the
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multigrid method due to their local nonlinear behavior. The turbulent Reynolds num
depends linearly on the distance of a cell center to the nearest wall. Especially close to
walls, differences in wall distances at different grid levels cause strong changes within t
exponential damping functions. For cases with flow separation a coarse grid recalcul;
of these terms may prevent convergence [14].

3. NUMERICAL METHOD

The unsteady form of governing equations is integrated in time using an implicit fin
volume LU algorithm [4, 31]. Jameson and Yoon [32] have demonstrated the ability
this driving scheme to rapidly damp out high-frequency error modes. This is a basic
necessary feature for an algorithm to be used as a smoother for multigrid methods. In ad
to the inviscid Jacobians, simplified viscous Jacobians are included in the implicit part b:
on the thin-layer Navier—Stokes equations. In Eq. (8) this is shown for-theection only.
The discretized implicit LU scheme is given by [31]

I+ At(AY — A7 +BY =B + 2T — Hij) — At(Afj + B, + Tij1)
—At(AL, + B+ Tij1)]AQi) = AtR;j. (8)

To ensure diagonal dominance the upwind differenced inviscid Jacobians on the cell i
facesA andB are splitin+ and— matrices containing only positive or negative eigenvalue
[4, 31]. T are centrally differenced Jacobians of the viscous fluxesHaadS/0Q is the
source Jacobian due to chemistry and turbulence. The turbulence equations are sol
a loosely coupled form with the fluid motion. FinalRy is the discretized residual. If the
diagonal, lower, and upper Jacobians of Eq. (8) are combined to fnrim andU, this
equation can be expressed by

(D+L+U)AQ™! = —AtR. (9)

Approximately factored, Eq. (9) is solved in two steps [31]:

Lower sweep
(D 4+ L)AQ = —AtR. (10)

Upper sweep
(D +U)AQ™! = DAQ. (11)

The solution is updated B@"+* = Q" + AQ"*L. The source and viscous Jacobians add
the diagonaD, forming a matrix which has to be inverted directly at every grid point. A
approximation for the chemistry source Jacobian has been proposed by Eberhardt and
[33], resulting in a diagonal matrix only. However, the computational, more expensive
of a full chemical source Jacobian is preferred in the present paper. Local time steppi
used to enhance convergence to a steady state.

As the right-hand side (RHS) is discretized with central differences, a second- and fot
order matrix dissipation is added to reduce oscillations near shock waves and to el
convergence to machine accuracy [34, 35].
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4. THE MULTIGRID METHOD

Afull coarsening multigrid method based on the full approximation storage (FAS) sche
of Brandt [2, 36] is used. The implicit version for approximately factored schemes was
presented by Jameson and Yoon [4]. Coarse grids are formed by eliminating every ¢
grid line of the previous finer mesh.

If multigrid methods are used for chemically reacting flows, problems arise from
strongly nonlinear source vector. Chemistry is a local phenomenon, and the basic fea
of multigrid such as damping out low-frequency errors do not work. However, converge
accelerations are possible by using larger time steps. A necessary condition is the sta
of the chemical time integration scheme and a time step limit, which allows such a prc
dure. The time step limit due to chemistry is supposed to be larger than that of conve
and viscous contributions. In this case, convergence accelerations may be possible e
regions of disappearing convective fluxes. Because the time step due to convection an
fusion increases at least linearly with increasing grid level (for full coarsening), a signific
advantage may be expected. So as to allow larger chemical time steps, the full analyti
formed source Jacobian is used and chemistry is treated fully coupled with the fluid mof

A V-cycle multigrid method is chosen for all simulations. The calculation is initialize
by a nested iteration approach. The advantage of nested iterations is the provision of
initial distributions at low cost, leading to better convergence rates at the beginning of
calculation. For the simulation of chemically reactive flows a good initial guess still m
be more important than in nonreactive cases. A steady state distribution of flow varia
often causes fewer problems for multigrid time integration than transient states.

One iteration of the driving numerical scheme is expressed by rewriting Egs. (10)
(11) to

FKAQ¥ = R(QY), (12)

whereF¥ = F(Q) is the implicit LU operatorR is the residual, an#l indicates the grid
level. Within one FAS V-cycle, the new iterate on the finest grid is calculated by the followi
steps:

Step 1 One relaxation sweep is carried out on the finest deig () and the solution
is updated.

Step 2 Initialization on the next coarser grid. The solution and the recalculated res
uals are passed to the next coarser grid by

g+l = |k,_>k+1Qk, RléJrl = ﬁ(>—>k+lR(Qk)’ (13)

where the subscripts 0 aedepresent the initialized coarse grid solution and the collect:
residuals, respectively.

Step 3 A coarse grid forcing function has to be calculated [4]. Kef 1 the forcing
function is given by

Pk+l — R|é+1 _ R(Qngl), (14)
while fork > 1,

P = 1k V(QY) — R(QE™) (15)



MULTIGRID APPROACH FOR COMBUSTION SIMULATION 327

is used. The residual error at leke} 1 is the sum of the forcing function and the calculate
residual

Vk+1 — R(Qk+1) + Pk+1, (16)
and the coarse grid solution is calculated similar to the procedure on the finest grid by
FRIAQHH = VKT, 17)

One iteration is performed at every grid level.
Step 4 If the coarsest grid is reached, the obtained coarse grid corrections are ir
polated on the fine level and added to the old solution by

Qhew= Q“ + Prs1k (Qkdw — QRss)- (18)

No additional relaxation sweeps are performed on coarse grids after each prolongation

4.1. Restriction and Prolongation

The simulation of supersonic and hypersonic flows requires modifications during
striction and prolongation in comparison to standard (sub- or transonic) multigrid al
rithms. This is due to the hyperbolic character of the governing equations. A pressure-t
damping [12-15] of the restricted defect error is used in the present paper to avoil
unphysical upwind influence at shock waves which otherwise would prevent converge
This method is numerically stable and computationally cheap, and allows one to treat
complicated flow structures. Koren and Hemker [12] have shown for inviscid hypersc
flows that a local damping of the restricted defect error improves robustness of the |
linear multigrid method. Leclercq and Stoufflet [11] employed characteristic restriction ¢
prolongation operators to solve the Euler equations. Especially for multicomponent flc
this mathematically correct treatment is computationally expensive, requiring matrix ve
multiplications.

The following transfer operators are used for the applied full coarsening cell-cente
finite-volume method.

o |k k41 for restriction of the flow variables [4],
1 4
heenQ = oz D AQ (19)
I=1

whereQK is the corresponding cell area at grid lekeFour fine grid volumes are always
collected forming one coarse grid volume.
e |y .1 for restriction of residuals and residual errors [13, 14],

4 4
kiR =Y RMax(0,1— &), IeigaV¥ =D Vimax(0,1—«f). (20)
=1 I=1

Instead of four fine grid residuals simply being added, the transfer is damped by paran
«{. This treatment is only necessary near shock waves which are located by the same ¢



328 GERLINGER, STOLL, AND BRIGGEMANN

as employed for adding artificial viscosity. Especially for multigrid applications we fou
it advantageous to use a blend between a standard pressure-based sensor [37] and &
with TVD properties [34],

Vo IPi+1j — 2Pij + Pi-1jl
Y@= 0dpitj — Pl IR — Pi—iD) + x(Pigyj + 2P + Piey))

(21)

which is given here for thé-direction. Values between 0.5 and 0.8 are used for all of
the following simulations. The damping paramet&is formed by the maximum of some
neighboring values of,

k _ ~k & & & n n n
K= CEmax(v L Vg s Vi W V1 Vi 1) (22)

and constant€* are used to adapt the damping factors to the decreasing smoothness
pressure distribution on successively coarser grids.

e Pki1k IS @ prolongation operator used to transfer corrections from coarse to 1
grids. While in subsonic or smooth supersonic regions of the flowfield a second-o
central prolongation operator is used (bilinear interpolation), a simple first-order upw
prolongation is employed near shock waves [38]. Again, the pressure-based sens
Eq. (22) works as a switch between both kinds of prolongation operators.

In addition to the described damping of the transferred residual error, for implicit num
cal schemes itis advantageous to reduce the coarse grid time step near shock waves. |
of the standard time stefats which is formed by convective and diffusive contributions
the following time step is employed:

At = At¥maxfe, (1 — k" fork> 1. (23)

The exponent is necessary to adjust the coarse grid time step damping to different sh
strengths, and is a limitation that usually is chosen to be 0.01.

4.2. Treatment of Source Terms

The greatest problem for multigrid solutions of turbulent reactive flows is the connect
between fine grid source terms and their representation on coarse grids. In contre
finite-rate chemistry, the coupling between turbulent source terms and fluid flow varial
is quite weak, making the use of multigrid methods for the turbulence equations m
more favorable. A simple freezing of nonlinear parts already enables convergence ev
complicated cases with strong turbulence production and up to five grid levels [14, 15,
For theg-w model used, the strain invariafitand the damping functioB, are calculated
on the finest grid only and passed to coarser grids by

S = 1Sk, D'&” = Ikl Dg, (24)

where they are kept constant. Because only these nonlinear contributions to the source
are kept constant, turbulent source term and source Jacobian are still able to react ¢
follow changes within the turbulent variables. This method is numerically very stable «
works well even for massively separated flows.
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The sensitivity of the chemical source terms

’

Ny Nk Ne
S=MWM Z l(vi/fr - Ui/,r) (kfr qul-r - kbr HC|VIJ>‘| ’ i=12..., Ns—1 (25)
r=1 1=1 =1

to changes within the flow variables makes the treatment of finite-rate chemistry with mi
level multigrid much more difficult. The coupling is given by the species concentration:
and the exponential dependence of forwlgrdnd backward reaction rétgon temperature.
An Arrhenius form is adopted for forward reaction rates while equilibrium constants
used to obtain backward reaction rates.

A linear transfer operatds.. k.1 iS used to restrict the flow variables to the next coars
grid in a conservative manner. Thus recalculation of strongly nonlinear source terms
cause strong differences within these terms at both grid levels (if gradients exist within
flow variables on the finer grid). If these differences become too strong, the relation betv
the grid levels gets lost, causing divergence of the multigrid algorithm. In the first three
of four investigated approaches, coarse grid source terms and Jacobians are approxi
using additional information from the finest grid. This is done to separate coarse grid
production terms and Jacobians (which are fully or partially determined from the fir
grid) from coarse grid variables.

e Approach 1 The chemical source terms and Jacobians are calculated on the fi
grid only and are kept constant on coarser grids. While the coarse grid source term
obtained by simply adding four fine grid values, the corresponding Jacobians are cell
weighted usind k. k+1-

e Approach 2The chemical source terms are treated in the same way as in approa
However, the transfer of chemical source Jacobian entries from fine to coarse gri
weighted using parameters that evaluate the chemical importance of the correspol
volume. The entries of the source Jacobitbare given byH; j withi, j=1,2,..., Ns+5.
All entries within the first six rows =1, ..., 6 of the source Jacobian are zero due t
the absence of source terms (neglecting contributions from turbulence which are tre
separately). While the columns=1,...,6 fori=7,..., Ng + 5 are determined using
transfer operatofy,.x,1 the submatrix, j =7,..., Ng + 5 is formed in a special way.
First, the changes in gas composition

AQ=1[0,0,0000A08;, A8, ...,AQy 4]

(26)
due to pure chemistry are calculated for every volume using local chemical produc
terms. Such a treatment additionally requires one to solve a dd{ efl equations for
every volume. The same time steg* is used for the four fine grid volumes, forming
one coarse grid volume. The fine grid change®; thereby achieved are now used fol
weighting the coarse grid Jacobians. The purpose of this procedure is to achieve ¢
grid changes due to pure chemistry which approximate the cell area weighted chang
the four corresponding fine grid volumes. If geometric weighting factors for corresponc
fine and coarse grid volumes are denoted by

af

S B (27)

Y
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coarse grid Jacobian entries are calculated by the expression

H'k+61‘ GQK'H _ Zf:l(Hiﬁﬁvjt6Qk‘Aé?+l’)l
146, ]+ Zﬁ:l(’AQljﬁLl‘v)l T

i,j=12.. Ns—1 (28)

Absolute values of changes in species concentrations are usedsansimall value to avoid
a zero denominator. Every column of the coarse grid sub-Jacobjan7,..., Ng+ 5 is
formed by weighting four corresponding fine grid columns with the same value. If fc
fine grid changes have the same sign, and if coarse and fine grid time steps are cl
identically, this Jacobian achieves a change on coarse grid which is identical to the four
area weighted fine grid changes.

e Approach 3 The rates of forward and backward reaction are calculated on 1
finest grid only, transferred to coarser grids, and kept constant. Additionally, a transfe
temperature derivatives for the reaction rates is necessary to calculate coarse grid Jacc
This approach was chosen because the most nonlinear dependence of the source f
due to temperature within the Arrhenius form. This approach still allows the coarse
chemical production terms to vary due to changes in species densities.

o Approach 4A new sensor is calculated to locate regions with high chemical intens

1 s Y
V‘(NS—1§|S|W+E (29)

to reduce the transferred residual error. Instead of the transfer operators defined by Eq
now

4
lekr R = )~ R max0, min(1 — «, 1 — B*¥)]
2 (30)

4
lokraVE = ) ViEmax0, min(1 - «, 1— BXy)]
=1

is used. Such a local damping was preferred to the global one presented in Ref.
Combustion is often limited to small regions, thus allowing the full multigrid scheme
work outside combustion zong§ |max iS the maximum absolute production rate of specie
i within the flowfield, B¥ is a grid level-dependent constant, anagain is a small number
to avoid division by zero. It is found to be advantageous that all individual production rg
contribute to this sensor which is limited teQy < 1. Animportant condition for the sensor
to work is its smooth distribution. An exponemtof 0.25 worked satisfactory for all test
cases described later. A further possibility to improve convergence of the multigrid sch
is to perform the above described damping for the species residual errors only. This re
in a decoupling in time between continuity and species conservation equations. How:
steady state solutions are unaffected by such a treatment.

4.2.1. Assessment of different approachesl methods which keep parts or the to-
tal chemical source vector or source Jacobian constant suffer from the extremely st
coupling between chemistry and fluid motion. Changes within species concentratior
temperature not being reflected within the parts kept constant are the major drawbac
approaches 1 to 3. These methods worked for all investigated test cases employing
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three grid levels and a time step reduction on the third grid. A fourth grid level alwe
aggravated the results. Therefore, we prefer the simple local damping of approach
disadvantage of this method is the strong case dependence of the choice of parBinet
anda to limit the degree of damping. The reductions in CPU time achieved by usin
fourth grid level are small but there still is an improvement.

While strong reductions in CPU time are obtained for attached flames, results for deta
flames are still unsatisfactory. If the point of ignition is determined by chemical kineti
differences between the grid levels destroy convergence. With approach 3 we hop
localize ignition on coarse grids with reaction rates determined from the finest grid. Howe
no satisfactory results could be achieved with this method for detached flames.

5. RESULTS AND DISCUSSION

Numerical tests are performed to evaluate efficiency and robustness of the pres
multigrid method for turbulent supersonic flows. All computations are initialized by fixir
the inflow properties in the interior of the domain. The first set simulates nonreactive fl
to demonstrate the ability of the multigrid technique to treat shock waves as well as so
terms due to turbulent production. Next, three simulations are presented which inc
source terms due to both turbulence and chemistry. These test cases cover premixe
diffusion-dominated hydrogen combustion. All converged solutions of single and mt
grid calculations are identical. The employed 20-step reaction mechanism [25] resul
a numerical stiff system of governing equations. The maximum cell species dbéenk”
numbersDa; = (I1eS)/(p+/UZ + v2) are 18.9, 1.1, and 24.1 for the first, second, and thi
test case. The reference lengithwas chosen to be 1 cm. The maximum ratio of maximui
to minimum species Danakiler numbers within any volume is up to®1&or comparison
the last two test cases also show convergence rates of nonreactive calculations.

5.1. Ramped Ducts with and without Separation

Three planar ramped duct test cases without combustion are calculated and compare
experimental data of Settles al.[39, 40]. In accordance with the experiment the angles
the compression corners arg 86, and 20. The inflow Mach number is 2.85, and inflow
static temperature and pressure are 100 K and 0.229 bar, respectively. All simulations
6.2 cm upstream of the ramp £ O is located at the corner) using calculated, fully develope
turbulent inflow profiles matching the experimentally measured boundary layer thickr
of § =2.1 cm. The computational grid contains 1630 volumes and is strongly refined
at the wall and in the separation zone near the corner. All values of the normalized dist
to the wall,y*, are smaller than 0.6 at stationary condition. Such a level of refinemen
required by most low-Reynolds-number turbulence models for an accurate resolutic
the viscous sublayer. The resulting cell aspect ratios on the surface are as high as
While the flow over the 8ramp is still attached, a very small separation zone occurs
the 16 ramp, and the flow is separated over a region of about 18 mm for thea2tp.
With increasing separation zone, turbulent production and dissipation terms increasi
dominate the turbulence conservation equations. Figure 1 shows a comparison bet
experimental and calculated normalized wall static pressure profiles. With the exceptic
the 20 ramp, where the increase in pressure in front of the separation zone is locate
far downstream, the results compare quite well. Skin friction distributions are illustrate
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FIG. 1. Normalized surface static pressure distributions for ramped duct test cases.

Fig. 2. The results indicate that the predicted increase in skin friction after separation i
steep in comparison to the experiment. The good overall agreement between experimel
simulation makes thg-w model interesting due to its favorable properties in conjunctic
with multigrid methods.

Convergence behavior of the calculations is displayed in Figs. 3 and 4. Plotted are
averaged absolute residuals of the continuity gndurbulence) conservation equations
versus the number of multigrid cycles. A four-level V-cycle multigrid method with tw
coarse grid iterations is employed, commencing on the finest grid. It may be seen that
and turbulence residuals converge at nearly the same rate. This is valid for all investic
test cases and is an advantage if all equations are treated with the multigrid techn
According to Eq. (20) the transferred residual errors are damped in the vicinity of sh
waves. While the damping factok& are zero in the smooth parts of the flowfield, they
may approach one near shock waves. For thg@®p the maximum valueX at stationary
condition out of all volumes is 0.27, 0.63, and 0.89 for the transfer from first to seco
second to third, and third to fourth grid level, respectively. An unfavorable property of
LU-SGS scheme may also be observed from Fig. 3. With the occurrence of a large sepa
region for the 20 ramp and subsequently a large pocket of subsonic flow, the converge
rate of the algorithm degrades. This is due to an increased amount of upwind influe
[41]. If the multigrid method is employed, convergence histories also differ due to fl
separation. However, machine accuracy is obtained after the same number of muli
cycles. Convergence histories of the density residuals in terms of work units are plc
in Fig. 5. One work unit is defined as the computational time necessary for one fine
iteration. Because all computations are performed on vector computers (Cray C94 and |
SX4) using a fully vectorized code, reductions achieved in CPU time are smaller than
theoretically possible values. This is due to shorter vector lengths on coarse grids redt
the performance of the code. However, the convergence improvement relative to the s
grid iteration is at least threefold.
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FIG. 2. Surface skin friction distributions for ramped duct test cases= 2tw/(pU%)).

5.2. Oblique Detonation Wave

The first test case including finite-rate chemistry is a supersonic Mach 5 flow over a we
with 26.5° half angle (see Fig. 6). The inflow conditions are a static pressure and temper
of 0.324 bar and 450 K, respectively. Hydrogen and air are premixed at an equivalence
of 0.6. Due to these inflow conditions a stationary stable detonation wave is obtained
Euler solution for the same problem may be found in Ref. [42]. A 1-block grid containi
120x 80 volumes is used for this calculation. The minimum normal spacing for the gric
solid walls is 17 x 10-6 m, fine enough to ensuge” values smaller than 0.7 even at the tif
of the wedge. The refinement near the solid wall results in cell aspect ratios of up to 2
For detonation waves there is a direct coupling between the increase in pressure due
shock wave and the increase in pressure due to heat release from combustion. Downs
of the detonation wave, combustion is nearly completed. According to our experience
detonation wave angle strongly depends on the finite-rate chemistry model used a
determined by the amount and speed of heat release due to combustion. Figure 7 ¢



334 GERLINGER, STOLL, AND BRIGGEMANN

— 1 level, 8°ramp

density residual
=)

10 E W ——= 1level, 16°ramp
10" N 1 level, 20°ramp
1 0—12 b ---- 4 level V2, 8°ramp T
_13 —-—- 4level V2, 16°ramp
10 3 + 4 level V2, 20°ramp
o™ : : :
0 10000 20000 30000

multigrid cycles

FIG. 3. Convergence histories of the density residuals for nonreactive ramped duct test cases verst
number of multigrid cycles.

pressure profiles along the cut lige= 6.6 cm forx < 10 cm andy = 0.334x + 3.26 cm for

x > 10 cm. The differences between the present calculation and those of Ref. [42] me
result from different reaction schemes and subsequent different detonation wave angle
use of a simpler 8-step reaction scheme instead of the 20-step reaction scheme the
angle and shock location was obtained as in Ref. [42], where a 9-step reaction schel
employed. Mass fraction profiles obHH,0, O, and OH are plotted in Fig. 8.

q residual
=)

120 A — 1 level, 8°ramp

10 £ ——~— 1level, 16°ramp
T S SR 1 level, 20°ramp
o"? L \‘:‘;;“ ---- 4level V2, 8%ramp =~

13 —-—- 4level V2, 16°ramp
0  4level V2, 20°ramp
10 . . .

0 10000 20000 30000

multigrid cycles

FIG. 4. Convergence histories of tlggresiduals for nonreactive ramped duct test cases versus the numbe
multigrid cycles.
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10-1 — 1 level, 8°ramp
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] - 1 level, 20°ramp
10 N ---- 4level V2, 8°ramp
YRS N —-—- 4level V2, 16°ramp
+ 4 level V2, 20°ramp

density residual
)
2

0 10000 20000 30000
work units

FIG. 5. Convergence histories of the density residuals for nonreactive ramped duct test cases verst
number of work units.

From a numerical point of view an attached detonation wave is less critical for the
of multigrid methods than diffusion-dominated flows. In such cases combustion only te
place in a spatially very limited zone coupled with strong gradients in static pressure.
simplifies the calculation of sensors to locate main reaction zones. The chemically
combustion downstream of the detonation wave did not cause any problem for the mult
method. All four proposed approaches worked well for this test case using a nested four-
V-cycle multigrid algorithm. Moreover, the described standard residual error damping
time step reduction at shock waves (see Egs. (20) and (23)) already enable convergenc
demonstrates the possibility to achieve convergence of a multigrid method by blendin
the transferred residual error in critical regions. On the other hand every reduction of cc
grid information degrades the achievable acceleration rates, making optimum dam
parameters desirable. If the damping factors * (see Eq. (20)) are multiplied with
the cell volume, added, and normalized with the total flowfield area, the average dam

A
y
p =0.324 bar
®=0.6
Ot ——
Ma=35
T=450K
detonation wave

t + =
10 30 x (cm)

FIG. 6. Geometry and inflow conditions for detonation wave simulation.
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FIG. 7. Pressure profiles along cut line for detonation wave simulation.

factor during restriction from grid level one to two is 0.82, that from level two to three
0.87, and that from level three to four is 0.75. Similar values are obtained for the avel
reduction of coarse grid time steps. However, a locally strong damping near the deton:
wave limits the information passed, thus retarding convergence. Convergence histori
the normalized absolute density residual versus the number of work units are illustrate
Fig. 9. One four-level V-cycle is roughly 2.39 times as expensive as one fine grid iterat
Convergence improvement relative to the single grid solution is more than a factor of

CPU time.
10°
10‘1 R \\ ______________________
8 10
46 H
= i !
& i
« -3 "
% 10 - Hz il
E .............. H,0 ll
---- 0, .
T i S |
’l
il
107 : : - ' ' '
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FIG. 8. Mass fraction profiles along cut line for detonation wave simulation
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0 5000 10000 15000 20000
work units

FIG. 9. Convergence histories of the density residuals for detonation wave calculations versus the numt
work units.

5.3. Plane Reactive Shear Flow

More severe problems for multigrid techniques arise if diffusion-dominated flames
treated. The following model problem [43] corresponds to a supersonic shear flow o\
splitter plate with a 4angle (see Fig. 10). Precalculated, fully turbulent inlet profiles wil
8 =0.5 cm boundary layer thickness are used for both streams. Pertinent inflow condit
of the upper air and the lower hydrogen/nitrogen stream are summarized in Table I.
flow is characterized by its high inflow temperatures which cause ignition directly at the
of the splitter plate. The simulation starts 4 cm upstream of the tip, employing a two bl
grid with 128x 64 volumes for each block. Due to the requirements of turbulence mo

(Cm)'lI'I'I‘I'I'I‘I'I‘I'I

1.50
air 0.001 0.003 0.025

i

hydrogen/nitrogen mixture

1.00

L I A B Y

1

0.50

0.00

|

-0.50

-1.00

-1.50

RS R R

-2000 . v vy
-4 0 4 8 12

>
,()\ | 1 1 1 1 1 1 1 f
3 Lol lalind

FIG. 10. Calculated contours of OH mass fractions for plane reactive shear flow.
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TABLE |
Inflow Conditions for the Upper Air and Lower
Hydrogen/Nitrogen Stream

Upper air stream Lower N, stream
p (bar) 1 1
u(m/s) 1800 2697
T (K) 2000 2000
Y, 0 0.1
Yu, 0.7664 0.9
Yo 0.2336 0

and flow characteristic the grid is highly clustered near solid walls, at the tip of the spli
plate, and in the combustion zone, resulting in cell aspect ratios of up to 2200" ¥dlues
of near wall cell centers are smaller than 0.2. Figure 10 shows calculated OH mass fra
contours indicating the main combustion zone.

Figures 11 and 12 illustrate convergence histories of the density residuals versus the
ber of multigrid cycles and work units, respectively. One four-level V-cycle is roughly 2.
times as expensive as one fine grid iteration. All calculations up to the second grid leve
performed without modifications due to chemistry. As already mentioned, approaches
3 suffer from the parts kept constant in source term and source Jacobian. The use of &
grid level already destroyed or aggravated convergence. However, a further improvel
in comparison to the two-level multigrid is achieved by a global time step reduction on
third grid level. No improvement was obtained employing a fourth grid level. For this t
case approaches 1 to 3 achieved quite similar results. The disadvantage of the first
approaches is a strong sensitivity to flow conditions, such as grid spacing and resoluti

0

10 —— 1llevel
10—1 ---- 2level V1
o . e 3 level V1 (approach 3)
10 —-—"- 3 level V1 (approach 4)
10‘3 L ——— 4level V1 (approach 3)
— 1 0_4 ] * 4 level V1 (approach 4)
< &—=A 4 level V1 (no chemistry)
= -5
- 107 ¢
g7 —6
o 10_7 3
2107 |
210" }
L 9
< 100 k
—10
10 1
~11
10 1
107}
1 0-13

0 5000 10000 15000 20000
multigrid cycles

FIG.11. Convergence histories of the density residuals for planar nonreactive and reactive shear flows v
the number of multigrid cycles.
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the combustion zone. Even if the best results for this test case could be achieved by app
3 and three grid levels, approach 4 is recommended because of its higher stability. A
the first three approaches, a four-level multigrid did not improve the convergence u
approach 4 but at least achieved about the same acceleration as the three level mu
method. The greatest problem is the optimum choice of damping parameters because
input values define the degree of convergence acceleration. Nevertheless, improvem
terms of CPU time in comparison to the single grid iteration is slightly better than threef

5.4. Axisymmetric Shear Flow

The final test case considered corresponds to an experiment of&zdrjd4]. Figure 13
illustrates the axisymmetric hydrogen injection into a preheated vitiated air stream. A th
block grid is chosen to resolve the lip thickness at the end of the injector. The grid cont
136x 72,112 x 48, and 136« 48 volumes to simulate the upper half of the symmetric prol
lem. The calculation starts at= —0.33 cm, thus simulating the inner and outer boundat
layers at the tube surfaces (see Fig. 15). Precalculated, fully turbulent boundary layer
files are specified as inflow conditions. The computational grid is highly clustered near s
walls as well as in the recirculation zone at the end of the tube. The minimum radial spa
is 1x 10-® m, fine enough to ensuse” values smaller than 0.8 for the converged solutior
The highest cell aspect ratio is about 500. The inflow conditions of the pure hydrogen
the vitiated air are summarized in Table II. Figures 14 and 15 show calculated temper:
and pressure contours to illustrate some overall features of the flowfield. Expansion
are formed at the outer and inner rims at the end of the tube, followed by shock we
(see Fig. 15). A strongly refined grid arrangement is necessary to resolve these fes
which may be important for ignition. Species profiles have been measured at four diffe
streamwise locations. One of these profiles is plotted in Fig. 16.

1_01 — 1level
10 ---= 2level V1
10—2 ~~~~~~~~~~~~~ 3 level V1 (approach 3)
3 —-—- 3 level V1 (approach 4)
10 . ——= 41level V1 (approach 3)
= 10'4 L \'*«.f: * 4 level V1 (approach 4)
5107 b N
A -6 )
o 10
2107 |
2 10" |
L —9
= 1 0 '\-x \\
107 | Mg,
—11 ey, X\' S
10 RSl
1 0—12 i
107" ' : : '
0 5000 10000 15000 20000
work units

FIG. 12. Convergence histories of the density residuals for planar reactive shear flows versus the numt
work units.
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TABLE Il
Inflow Conditions for Axisymmetric Combustion
Experiment of Evanset al. [44]

Hydrogen jet Vitiated air stream

p (bar) 1 1

u(m/s) 2432 1510

T (K) 251 1495

Ma 2 1.9

Y, 1 0

Yh,0 0 0.281

Ya, 0 0.478

Yo 0 0.241

The best convergence histories are obtained by damping the transferred residuals
multigrid method in regions of intense chemistry (approach 4). This method is only
plied for restriction at grid levels higher than two. For the same test case Edwards
obtained best results for a seven-species calculation with two grid levels and for a r
species calculation with three grid levels. The proposed application of local dampin
the restricted residual error still achieves improved convergence rates by the applic
of a four-level V-cycle multigrid algorithm. Additionally, we found it feasible to reduci
the damping factop (see Eq. (29)) as the solution approaches the stationary conditi
When the residual has dropped more than one order in magnitudegeduced in a log-
arithmic way until, after a drop of five orders in magnitugleis set to zero. At this point
the full four-level multigrid is working. Note, however, that there is still a reduction i
transferred residual error and time step=(1 in Eq. (23)) in the vicinity of shock waves.
The benefits of the multigrid algorithm are demonstrated in Figs. 17 and 18. Given are
convergence histories for density anndesiduals versus the number of multigrid cycles an
work units, respectively. It appears that one multigrid cycle requires 2.26 times the tim

, A
(cm) vitiated air
—

1 I

0.47625 ; |
— hydrogen

0+ - - — -
0.32625 ?l

-1 i I i >

-1 0 1 2 (cm)

FIG. 13. Geometry (cm) for the Evaret al.[44] axisymmetric combustion experiment.
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FIG. 14. Calculated temperature contours (K) for the Evanal.[44] experiment.

one fine grid iteration. As in the previous cases this factor is grid size dependent and r
higher than the theoretically possible value due to short vector lengths on coarse ¢
Thus, still better convergence rates may be expected if scalar computers are employec
four-level nested multigrid algorithm converges about three times faster than the one
solution.

6. CONCLUSIONS

An implicit multigrid method has been successfully applied to supersonic reactive flc
using a low-Reynolds-numbefro turbulence model as well as 20-step finite-rate cher
istry. All conservation equations are treated with the multigrid technique. This algorit
is robust in handling very small grid spacings and high aspect ratio grids, necessar:

(cm) [ ' ]

C 0.95
0.75 L 1.00

L 0.50
0.50 = /
0.25[ =

L .00
0.00C 0.95 .

0.0 0.5 1.0 1.5 (cm)

FIG. 15. Calculated pressure contours (bar) near the injector for the Etaid44] experiment.
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2.0
calculation
Y oH,
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1.5¢ v OH,0
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:a 1 0 (Y
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0.5 4 x/D=21.7
0.0 : =0 ' ' '
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FIG. 16. Profiles of H, O,, H,O, and N molar fractions ak/D = 21.7 for the Evan®t al.[44] experiment
(diameterD = 0.9525 cm).

high-Reynolds-number flows. Modifications to standard multigrid methods are uset
avoid unphysical upwind influences near shock waves. Turbulent source terms are tre
by freezing strongly nonlinear parts on coarse grids. Several approaches are investi
to treat the chemical source terms in order to extend multigrid methods to reacting flc
A simple local damping of the restricted residual error together with a time step reduc

10 ——— 1 level, density residual
1 0-1 ---- 1level, q residual
A -~ 4 level V1, density residual
10-2 —-—- 4level V1, q residual
—_ a—=a 4 level V1, density (no chemistry)
S L -3
'_5 10
€ -4
210
o -5
> 10
=
& 16
510
=l
-7
10
-8
10
-9
1 O 1 1 1 3
0 5000 10000 15000 20000

multigrid cycles

FIG. 17. Convergence histories of the density anpdesiduals for the Evaret al. [44] experiment versus the
number of multigrid cycles.
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10
10_1 —— 1 level, density residual
2 ---- 1level, q residual
10 -~ 4 level V1, density residual
= —-—- 4level V1, q residual
§ 10
(7]
8107
< 5
2107
'R
510°
o
107 _
10° L
107 ' ' ' '
0 5000 10000 15000 20000
work units

FIG. 18. Convergence histories of the density andesiduals for the Evaret al. [44] experiment versus the
number of work units.

in regions of high chemical intensity achieved best results for all investigated hydro
flames. While the treatment of turbulent source terms is very robust from a numerical f
of view, the chemistry still remains quite sensitive to the choice of local damping paral
ters. In addition, there are severe problems in simulating detached flames. The calcul
of several test cases has demonstrated the ability of the proposed nested multigrid m
to speed up convergence to a steady state by a factor of three in CPU time for atts
flames and low-Reynolds-number turbulence closure.
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